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Triangular-Domain Basis Functions for Full-Wave

Analysis of Microstrip Discontinuities
Robert Kipp and Chi H. Chan

Abstract—A nnmerical technique for computing the S-para-
meters of arbitrarily shaped microstrip discontinuities and
interconnects is presented. The microstrip conducing surface is
rendered in a triangular discretizatio~. Unknown currents are
expanded with triangular-domain basis functions in a method

of moments solution to the mixed-potential integral equation
(MPIE). lliangular basis functions offer several advantages

over rectangular subdomain functions, including their ability

to conform readily to arbitrary geometries without “staircase”

effect. Examples comparing triangular-domain modeling with
rectangular-domain modeling and experiment are given.

I. INTRODUCTION

T HE increasing switching speed and frequency of digital

and analog circuits has expanded the need for charac-

terizing board and chip-level microstrip interconnects without

recourse to low-frequency or quasi-static approximations. The

literature offers several full-wave approaches including mode

matching [1], finite-difference time-domain FDTD [2], [3], and

integral equation formulation solved with method of moments

(MoM) [4], [5]. Some address specific geometries, such as

microstrip step discontinuities [1] or open circuits and gaps

[6], while others are intended for application to arbitrary

configurations. In the latter category, the literature offers

techniques based on MoM where the current on the upper

conductor is expanded over rectangular subdomains in an ap-

proximate solution to the electric-field integral equation (EFIE)

[7], [8] or mixed-potential integral equation (MPIE) [5]. This

paper describes the application of triangular discretizations in

the MoM solution of an MPIE formulation of scattering by

microstrip interconnects and discontinuities.

Triangular subdomain basis functions were developed to

compute scattering into a homogeneous medium by arbitrary

surfaces [9]. Starting from an MPIE formulation, the unknown

surface currents on a perfectly conducting object are obtained

through MoM by rendering the surface in a nonuniform

triangular mesh and expanding surface currents in basis func-

tions defined over adjoining triangle pairs. More recently,

this technique was extended to the inhomogeneous microstrip

configuration to compute the surface current distribution and

input impedances of microstrip patch antennas [10]. The

efficient use of triangular basis functions in computing the

S-parameters of microstrip discontinuities is detailed here.
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Triangular discretization offers several advantages over rect-

angular discretization. The triangles conform exactly to any

angled edges in the discontinuity, and curved edges are ren-

dered in a line-segment rather than stair-case approxima-

tion. Transmission lines extending from the discontinuity at

oblique angles are also represented without stair-case effect

and handled with relative ease. Finally, triangular-domain

functions offer greater flexibility in the use of nonunifcmm

discretizations.

Section II provides a complete definition of the microstrip

characterization problem considered here. The governing equa-

tion employed is the mixed-potential integral equation (MPIE)

formulation, described in detail for microstrip in [11] and [12],

and briefly repeated here for the sake of continuity. SectiorL II

also gives the equations for representing currents in triangular

subdomains, and describes their incorporation into the MoM

solution of the MPIE.

Specific implementation details for the microstrip S-

parameter problem are given in Section III. The methodology

is based on unimodal analysis of currents on the extencled

ports. In consequence, the ports are included in the scattering

problem, and the number of unknowns often exceeds 10IOO.

Hence, efficient solution requires efficient computation of the

Green’s functions within the MPIE. Evaluation of Green’s

function is accelerated with a technique developed in [13] and

[14]; its important features are presented in Section 111. Ckte

can also spare significant computational effort by identifying

the redundant interactions among subdomain elements. Th,ese

redundancies exist in abundance in the regions of the

surface geometry where uniform discretization is viable. An

approach for exploiting redundancy in arbitrary discretizatiorts

is described.

The MoM procedure renders the current distributions on the

ports for a given excitation of the network. Scattering paramet-

ers can be extracted by computing the unimodal weighting

coefficients for forward and reverse current waves on the

ports. For an N-port discontinuity, no greater than N Iineamly

independent excitations are required, with structural symmet-

ry reducing this number. A robust procedure for obrdhhg

scattering parameters on an N-port is described in Section IV.

Numerical results are presented in Section V, with valida-

tion against experimental data for a‘ microstrip stub and a

coupled line. The results are also compared to those from a
commercial microwave CAD package and, where possible,

a full-wave, rectangular MoM code. Also considered is a

45° bend, whose S11 reflection measurement and full-wave

analysis with finite-difference time-domain (FDTD) method
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are documented [3]. Finally, a comparison of the triangular and

rectangular analyses of corner and miter bends is given. The

corner bend can be exactly conformed by both rectangular and

triangular discretization, while the miter bend can be exactly

conformed only by the triangular discretization. Deficiencies

in the rectangular approximation are identified.

II. MPIE FORMULATION AND SOLUTION

A. Problem Definition

The microstrip configuration considered here is illustrated

in Fig. 1 and has arbitrary surface conductor geometry. The

ground plane and substrate extend to infinity in the transverse

direction, and the space above the dielectric is unbounded. The

substrate is homogeneous and isotropic, but not necessarily

lossless. The upper conductor. and ground plane have zero

resistivity, and the upper conductor is infinitely thin. The

number of ports extending from the discontinuity is only

limited by computation power. With some reformulation of the

Green’s functions, the procedure may be extended to include

multiple dielectric and strip layers [12], [13].

With the goal of obtaining scattering parameters for a
multiport discontinuity, the problem can be divided in two

procedures: 1) obtain the surface current distribution on the

discontinuity and extended ports under a number of excitation

conditions; and 2) compute the scattering parameters from the

currents on the ports.

B. Computing Current Distribution

For a given excitation, the surface current distribution on the

discontinuity and ports can be obtained by solving a relevant

integral equation through the method of moments (MoM) [15].

We choose the mixed-potential integral equation (MPIE) over

the electric-field integral equation (EFIE), as it has weaker

singularities in its Green’s functions, rendering more quickly

convergent solutions [16].

The MPIE relates the electric-field incident upon the upper

conductor to the magnetic vector and electric scalar potentials

generated by the unknown surface current and charge densi-

ties [5]:

Einc = jtiA + V@,

where

A=
/

~ dS’J(r’)G. (r, r’)

Q=
/

dS’q.Gq(r, r’).
s

dielectric
layer w

—

h
lb

&r

ground plane

(1)

(2)

(3)

The primed and unprimed coordinates, respectively, designate

the source and field points. The Green’s function G. is the

horizontal component of the magnetic vector potential from an

infinitesimal horizontal dipole located at the interface (z’ = O).

GQ is the electric scalar potential for a pulsating point-charge

at the interface. Both potentials are evaluated at the interface,

displaced from the source by radius p. J. and q, are the

surface current and surface charge densities on the upper

microstrip conductor. The incident field Ein’ provides the

excitation to the system, the nature of which is addressed later

in the discussion of S-parameter extraction.

As part of the MoM solution to (l), the unknown current and

charge distributions are represented as a sum of vector basis

functions weighted by unknown coefficients. Hence, current

density J. is approximated by

N

(4)
n=l

Through application of the continuity condition

V . J, = –jwq~ , (5)

the expansion of the charge distribution is obtained from (4),

and no additional unknown coefficients are required.

Since the shape of the upper conductor is arbitrary, it

is subdivided into small elements, with subdomain basis

functions ~n approximating the current over each element. A

possible discretization of a splitter is illustrated in Fig. 2. Here,

we employ the triangular-domain basis functions developed

in Rao et al. [9]. In this scheme, any two triangular plates

sharing a side form a surface-current basis function, seen in

Fig. 3. These functions overlap, and each plate can be part of

up to three different basis functions. For any basis function

f ~, the two triangles are arbitrarily designated T: and T;,

with corresponding areas A: and A;. The current dependence
within fn is given by

(() otherwise

(6)

where 1~ is the length of the common side and p: = r –

rk~ p; =r; — r. A vector mapping of this dependence is

given in Fig. 3. The current flows from plate T: to T;, with

maximum current across the common edge, zero current at the
isolated vertices Vn+ and Vm–, and no currents with components

Fig. 1. Single layer microstrip geometry with a 2-port discontinuity. Fig. 2. Example of a triangular discretization for a splitter.
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Fig. 3. Vector dependence of triangular-domain basis fnnctions.

normal to the other four sides. The weighting in (6) is such

. that the current normal to the common edge is continuous

across that edge and, hence, no fictitious charge singularities

arise. Also, when the continuity equation is applied to (5), the

charge density is a constant equal to (ln/A~) and – (in/A;)

on each plate and the total charge is zero.

The N weighting coefficients in (4) are obtained through

the Galerkin procedure whereby the N basis functions are

adopted as testing functions [9]. The result is the familiar

MoM impedance matrix given by

{v} = [2]{1} (7)

where the N rows in vector V and matrix Z correspond to

the N testing functions applied, respectively, to the left-hand

side (LHS) and right-hand side (RHS) of (l), and the columns

of matrix Z represent the contribution of each basis function

to the tested field. By solving this system of linear equations,

the unknown weighting coefficients in vector 1 are obtained.

Defining the testing procedure in terms of the inner product

operator

(a, b)=~ dSa. b, (8)
s

we have

(E’”’, fm) = jLJ(A, fm) + (v@, frn) (9)

where ~n (~) is the rnth testing function. Evaluating (9)

involves two surface integrals —one for the testing procedure

and the other for the potentials within. The testing surface

integral can be eliminated by’ assuming that potentials A

and @ and incident field E;nc within the domains of each

triangle of ~n are constant and equal to their computed values

at the triangle centroids. A further simplification is had by

transferring the differential operator on @ onto the testing

function through integration by parts. Substituting (4) and (5)

into (l), it can be shown that the elements of matrix Z are

given by

where

@:n=
/

dS’ V’ . ~n(#)Gg (r-~+, #) . (12)
s

Here, pi+ and pfi– arise from evaluating testing function j’m

at the centroids of T~ and T;. Observe in (12) that A . ,fn

is constant in each triangular domain and that, for a given

basis/testing function pair mn, the contribution of the scalar

potential in (10) depends upon the triangular plates involved

but not the basisltesting function to which they are assigned.

Hence, if the integral (12) is evaluated for each element Z~,~,

many identical integrations will be performed. Considerable

computational effort is saved by evaluating and storing (12)

for all plate combinations and recalling these results as needed

in evaluating (10).

The same cannot be said of (11), whose integrand evaluated

over a particular source triangle depends on the identity of the

isolated vertex and, hence, the basis function to which the

triangle is assigned. However, a similar savings of

possible by breaking (11) into three scalar integrals

1, =
/

dS’ g,(r’)G. (r:, r’)
s

effort is

(1.3)

where gi (r-’) is set alternately to z’, y’, and 1. The basis

function dependence is removed from the integrals and rein-

troduced in the evaluation of Z~~ through a weighted sum of

these three. Thus, for each plate combination, a total of fcn.rr

scalar integrals are evaluated and later recalled in constructing

the elements in impedance matrix Z.

Finally, applying the approximate testing procedure in the

LHS of (9), the elements of the excitation vector V are given

by

[

%..(TC+) &
vm=—lm E” ~ , ~ +E’nc(.:) ~ ~] ~ (34)

Most of the elements v~ will be zero, as the incident field is

only applied in regions of port excitation, as discussed later.

III. EFFICIENT IMPLEMENTATION

A. Ejj5cient Evaluation of Green’s Function ‘

Generating the elements in matrix Z with (10) reqpires

convolution of the Green’s functions G. and G~ with the

triangular basis functions, so it is necessary to evaluate them

efficiently if acceptable solution times are to be achieved.

There are no closed-form expressions for G. and G~ in the

spatial domain, but they can be represented in closed form in

the spectral domain [14]

~=~
a ~T & [1 + ~T.(&)] (:15)

Gq=~~ [ 11 + RTE + $ (RTE + RTM) .
4rEo j2kzo

(16]
P

Here, CO and UO are the free-space permittivity and per-

meability. Wave numbers k~~ and kP are the vertical ~Lnd

radial components of the free-space propagation constant kO

in the cylindrical system. RTE and RTM are the reflection

coefficients at the interface of TE and TM plane waves

incident on the substrate with ground plane. The required

spatial-domain Green’s functions can then be expressed as an
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inverse Hankel transform on (15) and (16), which is commonly

referred to as a Sommerfeld integral

/

+(x

G.,,(P) = ~a,qH:2)(kPp)kP dkP (17)
—cc

where p is the radial separation between the source and the
(2)

observation point, both located on the interface, and Ho

is the zeroth-order Hankel function of the second kind. The

contour of integration can be deformed to avoid surface-

wave poles, which reside on the real kP axis for lossless

dielectrics and become complex for lossy dielectrics. Ap-

proximate analytic expressions exist for the evaluation of

(17) for p in the near and far fields [12], but intermediate

regions require quadrature of slowly convergent, oscillatory

integrands. However, a technique developed in [13] (and

improved in [14]) allows efficient evaluation in all regions.

The Sommerfeld integral i; divided into three contributions:

1) quasi-dynamic images, 2) surface waves, and 3) complex

images. The first two contributions, which dominate in the near

and far field, respectively, are extracted from RTE and RTAf,

and handled analytically using the Sommerfeld Identity [17].

What remains in RTE and RTM is relatively well behaved

and exhibits exponential decay for sufficiently large values

of lcP. This remainder can be accurately approximated with

a short series of exponential terms, which are interpreted as

complex images. The function is sampled from kP = O out

to a truncation point where the exponential decay character

dominates. The exponents of the expansion are computed using

Prony’s method [18], and the term weights are then obtained

through a least-squares fit. The inverse Hankel transform of

the exponential can be performed analytically, again using

the Sommerfeld Identity. Our experience indicates that 2–4

expansion terms are appropriate, depending on the frequency.

Particular care should be taken in determining the number

of expansion terms of G~ since its contribution in (10)

is a second-order difference arising from the source pulse

doublet and the testing procedure. Overall, the process yields

a reduction in computation time on the order of 100 compared

to straight quadrature, and is essential in keeping the matrix

fill time comparable to the matrix solve time, For this purpose,

however, it is not sufficient; a means of exploiting redundant

triangular interactions is also required.

B. Efficiencies of Discretization

As explained in Section II, all elements in the impedance

matrix can be computed from a linear combination of four

scalar integrals evaluated for all source/test plate combina-

tions. The number of these which must be computed can

be significantly reduced by exploiting redundancy in the

discretization and using approximate expressions when plates

are separated by large distances. In the latter case, the surface

integration over the source plate can be replaced by evaluation

of the integrand at the plate centroid. Equations (11) and (12)

become

(19)

The criterion for distinguishing near and far interactions is

based on the approximation used for the far interactions. If

the percent difference between the distances from the three

vertices of the source plate to the test plate centroid is under

some set maximum level, say, 20’%0,then that approximation is

viable. Since the great majority of plate interactions will often

fall into the category of far interactions, it also makes sense

to evaluate the Green’s functions with an interpolation table,

the construction of which is greatly expedited by the above

described scheme for computing Green’s functions. Both G.

and GQ exhibit (1/p) and log p singularities, so the table

must begin at some minimum displacement PO governed by

the interpolation scheme, the dominant (1/p) singularity, and

a maximum error criterion, say, 1Yo. We use second-order

differencing with an interval equal to 1% of the substrate

wavelength and p. set to 3.5 times the interval.

For near interactions, approximations (18) and (19) cannot

be used, and identification of redundancy is important to keep-

ing the computational task manageable. The interactions can

be cataloged by stepping through each plate combination. Far

interactions are ignored, as they are too numerous to store and

can be rapidly evaluated through the G. and Gq interpolation

tables at the point of computing the impedance Zm.. For near

interactions, the four scalar integrals from (12) and (13) are

evaluated and cataloged. Subsequent plate combinations are

then checked against the stored interactions and computed only

if no equivalent interaction is available. Two plate interaction

integrals are equivalent if the ~- and y-displacements of the

test plate centroid from the source plate vertices are identical.

Here, too, significant improvements in efficiency are achieved

by using, where possible, the interpolation tables in evaluating

the integrals.

When all the efficiencies of discretization are combined with

the method for rapid evaluation of the microstrip Green’s

functions and the elimination of the testing surface integral,

the construction time for the impedance matrix is often com-

parable to, if not less than, the matrix solve time when the

number of unknowns exceeds 500.

IV. EXTRACTING SCATTERING PARAMETERS

Once the approximate current-density distribution is found

by solving (7) for the unknown weighting coefficients, scat-

tering parameters for an N-port discontinuity are obtained by

examining the current distribution on the ports. In general,

N linearly independent excitation schemes are required to

evaluate an N-port network, although physical symmetries in

the discontinuity will reduce this. For example, a symmetric

2-port can be fully characterized by processing the current on

both ports while excitation is provided to one port.

The ports are driven by applying horizontal voltage genera-

tors at the port ends. This is achieved by setting the incident

electric field to some constant over the subcells at the port

end(s). The corresponding elements Vm in the excitation vector

are assigned a nonzero quantity according to (14). While

horizontal voltage sources are not the driving mechanism

typically employed in practice, they are legitimately used here;

the S-parameter extraction process only requires some form of
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excitation which alIows examination of a sufficient number

of current samples on the ports between the discontinuity

and the port ends. While the open-circuited port ends do

affect the amplitudes of the current waves on the ports, the

relationships among the waves incident upon and reflected

from the discontinuity are nonetheless uniquely defined by its

S-parameters [6].

With excitation applied, the sampled currents on the ports

are fitted to the unimodal wave model

Here we assume a port extending in the $-direction. Iij (x)

is the sampled current distribution on the ith port for the jth

excitation, obtained by integrating JZ across the port width.

If the port is discretized as shown in Fig. 4, we observe that

only the highlighted basis functions have x-components at the

indicated sample positions Zm, Zn+3. It can be shown from (5)

that the current at one of these points is given by

where i 1 and i2 are the weighting coefficients for the basis

functions spanning the sample point. The uniform line char-

acteristic impedance 2.; in (20), which can be obtained from

a rigorous empirical formula [19], is necessary to normalize

the currents when the ports are not identical. The propagation

constant -yi is obtained by MoM &alysis of a uniform line

of the same dimensions at the port. Here, the current on an

end driven uniform line is also fit to the form in (20) and T is

optimized for smallest error in the fit. With these line constants

known, forward and reverse complex wave coefficients a and b

are generated through least-squares fit of the current samples to

(20). In doing so, samples near the port end and discontinuity

should be left out owing to the presence of decaying modes.

The S-parameters are obtained directly from the computed

wave coefficients using the standard S-parameter matrix def-

inition [20]. Recasting this matrix to solve for S-parameters,

one finds, for example, that the Sll and S12 for an arbitrary

2-port are obtained by solving

r :lH=H ’22)
where the subscripts on wave coefficients a and b denote the

port, and the superscripts denote the excitation.

/

x
—

Sample Positions

Fig. 4. Scheme for sampling the x-component of current on a uniform line.

Fig. 5. Dimensions, substrate parameters, and discretization of microstrip

stub.

V. NUMERICAL RESULTS

A. Validating Examples

In order to validate the above approach, including the ap-

proximations used to make it computationally tractable, several

microstrip structures are simulated for which experimental data

are available. The first of these is the microstrip stub whose

geometry and discretization are given in Fig. 5. For the anaJy-

sis using triangular MoM, the two ports extend 30 subcells

each beyond those depicted in order to obtain a sufficient

number of current samples. The bilateral symmetry in the stub

is exploited in processing the port current data. A synopsis of

the computational task in computing the current distribution

for the stub and for the other cases which follow is provided

in Table I. Itemized there are the typical CPU time (SPARC 2

workstation) per frequency point, matrix build/solve time ratio,

number of unknowns (basis functions), number of triangular

plates in the discretization, and the number of identified,

unique plate-to-plate interactions; matrices were solved with

LINPACK’S complex, single-precision routine. The computed

and measured responses are shown in Fig. 6; the measure-

ment data are found in [8]. For comparison, also shown

are responses generated by an MoM code using rectangular

roof-top basis and razor-blade testing functions [21], and by

Libra v. 3.000, the commercial microwave CAD package.

The rectangular and the triangular MoM codes produce nearly

identical results. Both predict the location of the measured stub

resonance at 10.15 GHz to within 0.1 GHz, while the response

generated by Libra shows resonance at 9 GHz. For Libra, the

stub is constructed from a microstrip TEE circuit element

attached to a section of open-circuited line with capacitive

edge effect; these elements are operated within the specified

regions of validity [22].

The second validation example is the coupled line whose

geometry and discretization are seen in Fig. 7. The substrate

parameters are h = 1.524 mm, s. = 4.7. The nonunifcmm

discretization in the lateral direction of the couple-line pair is

necessary to accurately account for the close coupling. The

45° bends at the ends of the lines are included to allow

attachment of SMA connectors for measurements, conducted

with a calibrated HP-8510B network analyzer and HP-8514A

S-parameter test set. The measurement ends at 4 GHz due

to limitations in the connectors. Results for SM and S41

transmission coupling are given in Fig. 8(a) and (b). Simu-

lation data are generated from the triangular MoM code

and Libra. The 45° angle of the ports makes this structure

cumbersome to model with rectangular basis functions, and no

simulation is attempted with the rectangular MoM code. The
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TABLE I
SYNOPSISOF COMPUTATIONAL TASK FOR 3 DIFFERENT DISCONTINUITIES

CPU Time Build/Solve

Device (rein)
Stored

Time Ratio Unknowns Plates Interact.

Stub 5.1 1.0 453 364 3210

450-Bend (L) 5.4 1.4 436 350 935

45° -Bend (H) 75.2 0.5 1250 886 4247
Coup. Line 124.6 0.3 1536 1232 8692

test set contains two matched ports; the remaining two ports

of the coupled line are terminated with match loads verified

to produce less than -30 dB return over the measurement

band. A separate measurement with a uniform line showed

the SMA connectors to generate returns on the order of

-25 to -15 dB in this measurement band. This precludes

the possibility of a successful S11 reflection measurement.

For Szl coupling, Libra and the MoM code are in good

agreement with measurement up to 2.5 GHz, with the MoM

code coming closer to predicting the magnitude of the band-

pass peaks. Beyond 2.5 GHz, the measured coupling breaks

out of its previous pattern. Both Libra and MoM fail to

predict this, suggesting the emergence of nonideal phenomena

in this frequency range, including increased reflection from

the SMA connectors. For S41 coupling, Libra and MoM are

in close agreement, and both predict the overall character

of the measurement. The gap between measurement and the

Stub Transmission

‘“-1-
Measurement [8]

o 0 0 MoM - Triangular
1 – * – MoM - Reefangular

c ..-. ljbra I
“------------.,

tu
a) 0.s-
c ‘~.-

=
— 0.6 -

ml

m- O’1~
—

0.2

t
0; I

8 9 10 11 12

Frequency (GHz)

Fig. 6. Transmission response of stub; measured and computed with

method-of-moments (triangular and rectangular basis functions) and Libra v

3.000.

2794

Port 2 Port 4

-0203..
‘“”7==s

Port 1 Port 3

0203 mm
&

L

1667 mm

(v

computed response increases with frequency, again indicating
the contributions of nonideal phenomena.

A third validation example is prompted by a recent paper

presenting FDTD to simulate microstrip discontinuities [3].

The discontinuity is an unmitered 45° bend with line width

W = 2.4 mm and substrate parameters h = 0.79 mm,

Sr = 2.21. The measured return loss in [3, Fig. 13] exhibits

significant ringing—a result that cannot be explained by a

single bend. The published FDTD results also show ringing,

but they do not match well with experiment beyond 4 GHz.

The simulation data using the TOUCHSTONE and TCKT

commercial packages published in the same reference show a

smooth increase in return loss with increasing frequency, and

this agrees well with the trends predicted with our triangular

MoM code under three different levels of discretization and

simulation on Libra, seen in Fig. 9. Our Libra results identi-

cally match the published TOUCHSTONE results, which is to

be expected, as Libra is an extension of TOUCHSTONE. We

0
Coupling

I
-5

t
.10

E .15
~

-20—.

WN -23.

-30

-35

II
40051152

I
2.5 3 35 4

Frequency (GHz)

(a)

Isolation
o, 1

-5

-10

iii- .,5
~

—- -~

~ .B

-30

fl

— Measurement
-35 0 a 0 MoM - Triangular----~bra
4J! ~, i ,:5 ; I

2,5 3 3,5 4

Frequency (GHz)

(b)

Fig. 8. Coupled-line transmission (a) SZI and (b) S41: measured and
Fig. 7. Dimensions of coupled-line pair and a section of its discretization. computed with triangular MoM and Libra v 3.000.
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450-Bend Reflection
-lo~

‘-15
1

-20

~-25

=-30
—-t

000

+++

*** A
MoM - High Discr,
MoM - Med. Discr.
p% - Low Discr.

Fig. 9. Reflection response of 45° -bend computed with triangular MoM and

Libra v 3.000.

believe that the measured ringing is induced by reflections

at the ports, probably from connectors inadequate for this

measurement. Judging from the return predicted by the Libra

and TCKT packages and our MoM code, a connector with less

than -45 dB return would be required for a good measurement.

As mentioned earlier, our own experience using SMA coaxial-

to-microstrip adaptors indicates that reflections below -20 dB

cannot be reliably measured. Reference [3] does not indicate

what manner of connection to the bend was used. It is our

opinion that the ringing in the published FDTD response is

probably due to the error introduced by the absorbing boundary

condition [23].

For the MoM simulation, three different levels of discretiza-

tion are used. There are 2, 4, and 6 square subcells spanning

the line for the low, medium, and high levels of discretization;

a portion of the low-level discretization is illustrated in Fig. 9.

The two entries for the 45° bend in Table I are for the low and

high discretization. All three give nearly identical results and

agree with Libra in a frequency region where the reflections are

all below -20 dB. No data are shown for the low discretization

beyond 8 GHz, as it begins to fail at higher frequencies. Our

experience indicates that there should be at least 20 subcells

per wavelength to get acceptable results. This is a stiffer

requirement than the 10-per-wavelength rule for MoM applied

to far-field scattering problems; scattering parameters are

more sensitive to errors in current than the far fields. At

low frequencies, high’ levels of discretization are not only

unnecessary but, in fact, become a liability as the electrical

lengths of the ports shrink below one-quarter of a wavelength.

While the port subcells can be stretched to maintain the

electrical length of the port without increasing the number of

unknowns, this introduces a discretization discontinuity whose

effect, while small, can generate unacceptable errors in the

computed reflection coefficient when the reflection from the

actual discontinuity is also small, as is the case here. For
this reason, the plotted results for the low, medium, and high

discretizations begin at 1, 2, and 4 GHz, respectively.

B. Rectangular versus Triangular Discretization

A microstrip corner bend and miter bend were simulated

with the rectangular and triangular MoM codes to demonstrate

Corner Bend

0.75 mm

Staircase.
Miter Bend Approximation

Fig. 10. Dimensions and discretization of corner and miter bends, with

staircasing evident in rectangular discretization of miter bend.

the deficiencies which can arise from approximate represen-

tation of the conductor geometry. The geometry of the bends

considered is described in Fig. 10; the ports, which extend

60 subdivisions, have been truncated for clarity. The substrate

parameters are h = 1.27mm, SV = 10. The corner bend can

be exactly duplicated with either the triangular or rectangular

discretization. The miter bend can be rendered exactly with

the triangular discretization, but only approximately under

a rectangular discretization. The staircase approximation of

the miter bend was also conducted with the triangular MoM

code. The computed SI1 reflections are shown in Fig. 11.. The

triangular and rectangular simulations of the corner bend and

staircase approximated miter bend are in excellent agreement.

The approximate miter bend has several decibels less reflec-

tion, as-would be expected given a less abrupt transition. The
true miter provides a still better transition, as evidenced by

the simulation results under the triangular MoM code. The

agreement between the triangular and rectangular code in the

simulation of the corner and approximate miter bend shc~ws

that the predicted improvement in the true miter is duq only

to accurate rendering ‘of the shape, and not to small numerical

differences in two different computer codes.

VI. CONCLUSION

A frequency:domain method for characterizing arbitrarily

shaped, planar microstrip discontinuities has been described.

This technique is based on solving the mixed-potential in-

tegral equation with the method of moments (MoM) under

a triangular discretization of the microstrip upper conductor.

Bend Reflection
o~

10 00 MoM - Triangular
-5 + + + MoM - Rectangular

{

q -lo -

— -15 -

,/
)’

— Corner Bend
-25 - ‘--- Miter Bend (acmrox.)

--- Miter Bend (tk’e) ‘
-30~+

&e&e;c~\Gfiz~3 14

Fig. 11. Reflection response of corner bend and approximate miter bend
computer with both triangular and rectangular MoM, and true miter bend
computed with triangular MoM.
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Triangular basis functions offer significant improvement over

rectangular basis functions in their ability to conform to

arbitrary shapes, including ports which extend at oblique

angles. The implementation includes a number of techniques to

significantly reduce the computational task including efficient

evaluation of Green’s function for microstrip and exploitation

of redundancy in the discretization. These efficiencies allow

simulations where the time spent filling the MoM impedance

matrix is on Ithe order of the time spent solving that matrix.

Several validiiting examples confirm the overall approach. A

study of a corner and miter bend shows how approximate

rendering of a discontinuity in a rectangular discretization can

degrade the accuracy of the simulation.
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