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Triangular-Domain Basis Functions for Full-Wave
Analysis of Microstrip Discontinuities

Robert Kipp and Chi H. Chan

Abstract—A numerical technique for computing the S-para-
meters of arbitrarily shaped microstrip discontinuities and
interconnects is presented. The microstrip conducing surface is
rendered in a triangular discretization. Unknown currents are
expanded with triangular-domain basis functions in a method
of moments solution to the mixed-potential integral equation
(MPIE), Triangular basis functions offer several advantages
over rectangular subdomain functions, including their ability
to conform readily to arbitrary geometries without “staircase”
effect. Examples comparing triangular-domain modeling with
rectangular-domain modeling and experiment are given.

I. INTRODUCTION

HE increasing switching speed and frequency of digital

and analog circuits has expanded the need for charac-
terizing board and chip-level microstrip interconnects without
recourse to low-frequency or quasi-static approximations. The
literature offers several full-wave approaches including mode
matching [1]}, finite-difference time-domain FDTD [2], [3], and
integral equation formulation solved with method of moments
(MoM) [4], [5]. Some address specific geometries, such as
microstrip step discontinuities [1] or open circuits and gaps
[6], while others are intended for application to arbitrary
configurations. In the latter category, the literature offers
techniques based on MoM where the current on the upper
conductor is expanded over rectangular subdomains in an ap-
proximate solution to the electric-field integral equation (EFIE)
[7], [8] or mixed-potential integral equation (MPIE) [5]. This
paper describes the application of triangular discretizations in
the MoM solution of an MPIE formulation of scattering by
microstrip interconnects and discontinuities.

Triangular subdomain basis functions were developed to
compute scattering into a homogeneous medium by arbitrary
surfaces [9]. Starting from an MPIE formulation, the unknown
surface currents on a perfectly conducting object are obtained
through MoM by rendering the surface in a nonuniform
triangular mesh and expanding surface currents in basis func-
tions defined over adjoining triangle pairs. More recently,
this technique was extended to the inhomogeneous microstrip
configuration to compute the surface current distribution and
input impedances of microstrip patch antennas [10]. The
efficient use of triangular basis functions in computing the
S-parameters of microstrip discontinuities is detailed here.
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Triangular discretization offers several advantages over rect-
angular discretization. The triangles conform exactly to any
angled edges in the discontinuity, and curved edges are ren-
dered in a line-segment rather than stair-case approxima-
tion. Transmission lines extending from the discontinuity at
oblique angles are also represented without stair-case effect
and handled with relative ease. Finally, triangular-domain
functions offer greater flexibility in the use of nonuniform
discretizations.

Section II provides a complete definition of the microstrip
characterization problem considered here. The governing equa-
tion employed is the mixed-potential integral equation (MPIE)
formulation, described in detail for microstrip in [11] and [12],
and briefly repeated here for the sake of continuity. Section II
also gives the equations for representing currents in triangular
subdomains, and describes their incorporation into the MoM
solution of the MPIE.

Specific implementation details for the microstrip S-
parameter problem are given in Section III. The methodology
is based on unimodal analysis of currents on the extended
ports. In consequence, the ports are included in the scattering
problem, and the number of unknowns often exceeds 1000.
Hence, efficient solution requires efficient computation of the
Green’s functions within the MPIE. Evaluation of Green’s
function is accelerated with a technique developed in [13] and
[14]; its important features are presented in Section III. One
can also spare significant computational effort by identifying
the redundant interactions among subdomain elements. These
redundancies exist in abundance in the regions of the
surface geometry where uniform discretization is viable. An
approach for exploiting redundancy in arbitrary discretizations
is described.

The MoM procedure renders the current distributions on the
ports for a given excitation of the network. Scattering parame-
ters can be extracted by computing the unimodal weighting
coefficients for forward and reverse current waves on the
ports. For an N-port discontinuity, no greater than N linearly
independent excitations are required, with structural symme-
try reducing this number. A robust procedure for obtaining
scattering parameters on an NN -port is described in Section IV,

Numerical results are presented in Section V, with valida-
tion against experimental data for a microstrip stub and a
coupled line. The results are also compared to those from a
commercial microwave CAD package and, where possible,
a full-wave, rectangular MoM code. Also considered is a
45° bend, whose Si; reflection measurement and full-wave
analysis with finite-difference time-domain (FDTD) method
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are documented [3]. Finally, a comparison of the triangular and
rectangular analyses of corner and miter bends is given. The
corner bend can be exactly conformed by both rectangular and
triangular discretization, while the miter bend can be exactly
conformed only by the triangular discretization. Deficiencies
in the rectangular approximation are identified.

I1. MPIE FORMULATION AND SOLUTION

A. Problem Definition

The microstrip configuration considered here is illustrated
in Fig. 1 and has arbitrary surface conductor geometry. The
ground plane and substrate extend to infinity in the transverse
direction, and the space above the dielectric is unbounded. The
substrate is homogeneous and isotropic, but not necessarily
lossless. The upper conductor. and ground plane have zero
resistivity, and the upper conductor is infinitely thin. The
number of ports extending from the discontinuity is only
limited by computation power. With some reformulation of the
Green’s functions, the procedure may be extended to include
multiple dielectric and strip layers [12], [13].

With the goal of obtaining scattering parameters for a
multiport discontinuity, the problem can be divided in two
procedures: 1) obtain the surface current distribution on the
discontinuity and extended ports under a number of excitation
conditions; and 2) compute the scattering parameters from the
currents on the ports.

B. Computing Current Distribution

For a given excitation, the surface current distribution on the
discontinuity and ports can be obtained by solving a relevant
integral equation through the method of moments (MoM) [15].
We choose the mixed-potential integral equation (MPIE) over
the electric-field integral equation (EFIE), as it has weaker
singularities in its Green’s functions, rendering more quickly
convergent solutions [16].

The MPIE relates the electric-field incident upon the upper
conductor to the magnetic vector and electric scalar potentials
generated by the unknown surface current and charge densi-
ties [5]:

Einc — JwA+ VP, 1)
where
A= / ds' T7(r"G, (v, ") )
S
o= /Q dS'qsGy(r,7"). E)
Microstfip z
dielectric Discontinuity
layer W

']

Single layer microstrip geometry with a 2-port discontinuity.

ground plane

Fig. 1.
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The primed and unprimed coordinates, respectively, designate
the source and field points. The Green’s function G, is the
horizontal component of the magnetic vector potential from an
infinitesimal horizontal dipole located at the interface (2’ = 0).
G is the electric scalar potential for a pulsating point-charge
at the interface. Both potentials are evaluated at the interface,
displaced from the source by radius p. Js and g, are the
surface current and surface charge densities on the upper
microstrip conductor. The incident field E™™® provides the
excitation to the system, the nature of which is addressed later
in the discussion of S-parameter extraction.

As part of the MoM solution to (1), the unknown current and
charge distributions are represented as a sum of vector basis
functions weighted by unknown coefficients. Hence, current
density J, is approximated by

N
To(r) =Y Lif. @
n=1

Through application of the continuity condition
V. Js = —jwgs, ®

the expansion of the charge distribution is obtained from (4),
and no additional unknown coefficients are required.

Since the shape of the upper conductor is arbitrary, it
is subdivided into small elements, with subdomain basis
functions f,, approximating the current over each element. A

. possible discretization of a splitter is illustrated in Fig. 2. Here,

we employ the triangular-domain basis functions developed
in Rao et al. [9}. In this scheme, any two triangular plates
sharing a side form a surface-current basis function, seen in
Fig. 3. These functions overlap, and each plate can be part of
up to three different basis functions. For any basis function
fn, the two triangles are arbitrarily designated 7)) and 7},
with corresponding areas A} and A;,. The current dependence
within f, is given by

s pb i rin T;F
fulr) = 2%‘ p, ifrinT, (6)
0 otherwise

where [, is the length of the common side and p} = r —
v}, p, = v, —r. A vector mapping of this dependence is
given in Fig. 3. The current flows from plate 7.} to T, , with
maximum current across the common edge, zero current at the
isolated vertices V,;" and V,,~, and no currents with components

Fig. 2. Example of a triangular discretization for a splitter.
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Fig. 3. Vector dependence of triangular-domain basis functions.
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normal to the other four sides. The weighting in (6) is such
_ that the current normal to the common edge is continuous
across that edge and, hence, no fictitious charge singularities
arise. Also, when the continuity equation is applied to (5), the
charge density is a constant equal to (I,/A}) and —(1,,/A;)
on each plate and the total charge is zero.

The N weighting coefficients in (4) are obtained through
the Galerkin procedure whereby the N basis functions are
adopted as testing functions [9]. The result is the familiar
MoM impedance matrix given by

vV} = [Z}{1} %)

where the N rows in vector V' and matrix Z correspond to
the N testing functions applied, respectively, to the left-hand
side (LHS) and right-hand side (RHS) of (1), and the columns
of matrix Z represent the contribution of each basis function
to the tested field. By solving this system of linear equations,
the unknown weighting coefficients in vector I are obtained.
Defining the testing procedure in terms of the inner product
operator

(a,b)z/SdSa‘b, ®)

we have

<Eincafm> :jUJ(A,fm) + <v<bafm> )

where f,,(r) is the mth testing function. Evaluating (9)
involves two surface integrals—one for the testing procedure
and the other for the potentials within. The testing surface
integral can be eliminated by‘ assuming that potentials A
and ® and incident field E*™° within the domains of each
triangle of f,,, are constant and equal to their computed values
at the triangle centroids. A further simplification is had by
transferring the differential operator on ® onto the testing
function through integration by parts. Substituting (4) and (5)
into (1), it can be shown that the elements of matrix Z are
given by

c+ c—

2 2
o5, - @Ln] 10)
where
AE = / dS' f.,(+")Ga (rE, ") an
S
dE = / dS' V' - f,.(1)Gy(reE, r'). (12)
S
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Here, p& and p¢, arise from evaluating testing function f,,
at the centroids of Tt and T),. Observe in (12) that A - f,,
is constant in each triangular domain and that, for a given
basis/testing function pair mmn, the contribution of the scalar
potential in (10) depends upon the triangular plates involved
but not the basis/testing function to which they are assigned.
Hence, if the integral (12) is evaluated for each element Z,,y,,
many identical integrations will be performed. Considerable
computational effort is saved by evaluating and storing (12)
for all plate combinations and recalling these results as needed
in evaluating (10).

The same cannot be said of (11), whose integrand evaluated
over a particular source triangle depends on the identity of the
isolated vertex and, hence, the basis function to which the
triangle is assigned. However, a similar savings of effort is
possible by breaking (11) into three scalar integrals

I, = / S’ g, (r")Ga (r<E,+') (13)
s

where g;(r') is set alternately to «’, %/, and 1. The basis
function dependence is removed from the integrals and rein-
troduced in the evaluation of Z,,,, through a weighted sum of
these three. Thus, for each plate combination, a total of four
scalar integrals are evaluated and later recalled in constructing
the elements in impedance matrix Z.

Finally, applying the approximate testing procedure in the
LHS of (9), the elements of the excitation vector V' are given
by

Jomg
Ty

P

2

U = —lm | E™(rY) + E"(rS7) (14

Most of the elements v,,, will be zero, as the incident field is
only applied in regions of port excitation, as discussed later.

III. EFFICIENT IMPLEMENTATION

A. Efficient Evaluation of Green’s Function

Generating the elements in matrix Z with (10) requires
convolution of the Green’s functions G, and G, with the
triangular basis functions, so it is necessary to evaluate them
efficiently if acceptable solution times are to be achieved.
There are no closed-form expressions for GG, and Gy in the
spatial domain, but they can be represented in closed form in
the spectral domain [14]

A Ho 1 1
== 15
Ga = (2o 1+ Frolky) (15)
-t 1 1+ Rrp+ K, (Rre + Rrar) (16)

= Ire 2k., TE kf, TE TM)| - :

Here, ¢, and p, are the free-space permittivity and per-
meability. Wave numbers k., and k, are the vertical and
radial components of the free-space propagation constant k,
in the cylindrical system. Rrp and Rpps are the reflection
coefficients at the interface of TE and TM plane waves
incident on the substrate with ground plane. The required
spatial-domain Green’s functions can then be expressed as an
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inverse Hankel transform on (15) and (16), which is commonly
referred to as a Sommerfeld integral

+oo
Gaolp) = / Go o HD (ko o)k, dk, a7

where p is the radial separation between the source and the
observation point, both located on the interface, and H(()z)
is the zeroth-order Hankel function of the second kind. The
contour of integration can be deformed to avoid surface-
wave poles, which reside on the real k, axis for lossless
dielectrics and become complex for lossy dielectrics. Ap-
proximate analytic expressions exist for the evaluation of
(17) for p in the near and far fields [12], but intermediate
regions require quadrature of slowly convergent, oscillatory
integrands. However, a technique developed in [13] (and
improved in [14]) allows efficient evaluation in all regions.
The Sommerfeld integral is divided into three contributions:
1) quasi-dynamic images, 2) surface waves, and 3) complex
images. The first two contributions, which dominate in the near
and far field, respectively, are extracted from Rrg and Rrag,
and handled analytically using the Sommerfeld Identity [17].
What remains in Rrg and Rrjs is relatively well behaved
and exhibits exponential decay for sufficiently large values
of k,. This remainder can be accurately approximated with
a short series of exponentials terms, which are interpreted as
complex images. The function is sampled from &k, = 0 out
to a truncation point where the exponential decay character
dominates. The exponents of the expansion are computed using
Prony’s method [18], and the term weights are then obtained
through a least-squares fit. The inverse Hankel transform of
the exponentials can be performed analytically, again using
the Sommerfeld Identity. Our experience indicates that 2—4
expansion terms are appropriate, depending on the frequency.
Particular care should be taken in determining the number
of expansion terms of G, since its contribution in (10)
is a second-order difference arising from the source pulse
doublet and the testing procedure. Overall, the process yields
a reduction in computation time on the order of 100 compared
to straight quadrature, and is essential in keeping the matrix
fill time comparable to the matrix solve time. For this purpose,
however, it is not sufficient; a means of exploiting redundant
triangular interactions is also required.

B. Efficiencies of Discretization

As explained in Section II, all elements in the impedance
matrix can be computed from a linear combination of four
scalar integrals evaluated for all source/test plate combina-
tions. The number of these which must be computed can
be significantly reduced by exploiting redundancy in the
discretization and using approximate expressions when plates
are separated by large distances. In the latter case, the surface
integration over the source plate can be replaced by evaluation
of the integrand at the plate centroid. Equations (11) and (12)
become

In

Arin = 5 [P Galrino i) + o7 Ga(rinoriT)] (18)
CIJf,Em =1, [Gq ('ri,rff) -G, (ri,rfl_)] . (19)
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The criterion for distinguishing near and far interactions is
based on the approximation used for the far interactions. If
the percent difference between the distances from the three
vertices of the source plate to the test plate centroid is under
some set maximum level, say, 20%, then that approximation is
viable. Since the great majority of plate interactions will often
fall into the category of far interactions, it also makes sense
to evaluate the Green’s functions with an interpolation table,
the construction of which is greatly expedited by the above
described scheme for computing Green’s functions. Both G,
and G, exhibit (1/p) and logp singularities, so the table
must begin at some minimum displacement py governed by
the interpolation scheme, the dominant (1/p) singularity, and
a maximum error criterion, say, 1%. We use second-order
differencing with an interval equal to 1% of the substrate
wavelength and pg set to 3.5 times the interval.

For near interactions, approximations (18) and (19) cannot
be used, and identification of redundancy is important to keep-
ing the computational task manageable. The interactions can
be cataloged by stepping through each plate combination. Far
interactions are ignored, as they are too numerous to store and
can be rapidly evaluated through the G, and G, interpolation
tables at the point of computing the impedance Z,,,. For near
interactions, the four scalar integrals from (12) and (13) are
evaluated and cataloged. Subsequent plate combinations are
then checked against the stored interactions and computed only
if no equivalent interaction is available. Two plate interaction
integrals are equivalent if the z- and y-displacements of the
test plate centroid from the source plate vertices are identical.
Here, too, significant improvements in efficiency are achieved
by using, where possible, the interpolation tables in evaluating
the integrals.

When all the efficiencies of discretization are combined with
the method for rapid evaluation of the microstrip Green’s
functions and the elimination of the testing surface integral,
the construction time for the impedance matrix is often com-
parable to, if not less than, the matrix solve time when the
number of unknowns exceeds 500.

IV. EXTRACTING SCATTERING PARAMETERS

Once the approximate current-density distribution is found
by solving (7) for the unknown weighting coefficients, scat-
tering parameters for an IV-port discontinuity are obtained by
examining the current distribution on the ports. In general,
N linearly independent excitation schemes are required to
evaluate an V-port network, although physical symmetries in
the discontinuity will reduce this. For example, a symmetric
2-port can be fully characterized by processing the current on
both ports while excitation is provided to one port.

The ports are driven by applying horizontal voltage genera-
tors at the port ends. This is achieved by setting the incident
electric field to some constant over the subcells at the port
end(s). The corresponding elements v, in the excitation vector
are assigned a nonzero quantity according to (14). While
horizontal voltage sources are not the driving mechanism
typically employed in practice, they are legitimately used here;
the S-parameter extraction process only requires some form of
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excitation which allows examination of a sufficient number
of current samples on the ports between the. discontinuity
and the port ends. While the open-circuited port ends do
affect the amplitudes of the current waves on the ports, the
relationships among the waves incident upon and reflected
from the discontinuity are nonetheless uniquely defined by its
S-parameters [6].

With excitation applied, the sampled currents on the ports
are fitted to the unimodal wave model

Lj(z) = \/%

Here we assume a port extending in the z-direction. Lji(z)
is the sampled current distribution on the ith port for the jth

‘[ai,-e”%"” — b,;j6+7w] . (20)

excitation, obtained by integrating J, across the port width. '

If the port is discretized as shown in Fig. 4, we observe that
only the highlighted basis functions have z-components at the
indicated sample positions &,,, 3. It can be shown from (5)
that the current at one of these points is given by
I(@,) = (i1 + i2), @1)
where ¢, and ¢ are the weighting coefficients for the basis
functions spanning the sample point. The uniform line char-
acteristic impedance Zg; in (20), which can be obtained from
a rigorous empirical formula [19], is necessary to normalize
the currents when the ports are not identical. The propagation
constant -y; is obtained by MoM analysis of a uniform line
of the same dimensions at the port. Here, the current on an
end driven uniform line is also fit to the form in (20) and v is
optimized for smallest error in the fit. With these line constants
known, forward and reverse complex wave coefficients ¢ and b
are generated through least-squares fit of the current samples to
(20). In doing so, samples near the port end and discontinuity
should be left out owing to the presence of decaying modes.
The S-parameters are obtained directly from the computed
wave coefficients using the standard S-parameter matrix def-
inition [20]. Recasting this matrix to solve for S-parameters,
one finds, for example, that the S;; and S;2 for an arbitrary
2-port are obtained by solving

0,% al Sll b% ‘
S12 b3

[V

NN

ai a

where the subscripts on wave coefficients ¢ and b denote the
port, and the superscripts denote the excitation.

‘ Xn ...,{ Ax |‘~ Xn+3

Ay -1 ’
— X

! T

N

Sample Positions

Fig. 4. Scheme for sampling the z-component of current on a uniform line.
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Fig. 5. Dimensions, substrate parameters, and discretization of microstrip
stub.

V. NUMERICAL RESULTS

A. Validating Examples

In order to validate the above approach, including the ap-
proximations used to make it computationally tractable, several
microstrip structures are simulated for which experimental data
are available. The first of these is the microstrip stub whose
geometry and discretization are given in Fig. 5. For the analy-
sis using triangular MoM, the two ports extend 30 subcells
each beyond those depicted in order to obtain a sufficient
number of current samples. The bilateral symmetry in the stub
is exploited in processing the port current.data. A synopsis of
the computational task in computing the current distribution
for the stub and for the other cases which follow is provided
in Table I. Itemized there are the typical CPU time (SPARC 2
workstation) per frequency point, matrix build/solve time ratio,
number of unknowns (basis functions), number of triangular
plates in the discretization, and the number of identified,
unique plate-to-plate interactions; matrices were solved with
LINPACK’s complex, single-precision routine. The computed
and measured responses are shown in Fig. 6; the measure-
ment data are found in [8]. For comparison, also shown
are responses generated by an MoM code using rectangular
roof-top basis and razor-blade testing functions [21], and by
Libra v. 3.000, the commercial microwave CAD package.
The rectangular and the triangular MoM codes produce nearly
identical results. Both predict the location of the measured stub
resonance at 10.15 GHz to within 0.1 GHz, while the response
generated by Libra shows resonance at 9 GHz. For Libra, the
stub is constructed from a microstrip TEE circuit element
attached to a section of open-circuited line with capacitive
edge effect; these elements are operated within the specified
regions of validity [22].

The second validation example is the coupled line whose
geometry and discretization are seen in Fig. 7. The substrate
parameters are h = 1.524 mm, ¢, = 4.7. The nonuniform
discretization in the lateral direction of the couple-line pair is
necessary to accurately account for the close coupling. The
45° bends at the ends of the lines are included to allow
attachment of SMA connectors for measurements, conducted
with a calibrated HP-8510B network analyzer and HP-8514A
S-parameter test set. The measurement ends at 4 GHz due
to limitations in the connectors. Results for S; and Sy
transmission coupling are given in Fig. 8(a) and (b). Simu-
lation data are generated from the triangular MoM code
and Libra. The 45° angle of the ports makes this structure
cumbersome to model with rectangular basis functions, and no
simulation is attempted with the rectangular MoM code. The
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TABLE I
SYNOPSIS OF COMPUTATIONAL TASK FOR 3 DIFFERENT DISCONTINUITIES

CPU Time Build/Solve Stored

Device (min) Time Ratio Unknowns Plates Interact.
Stub 5.1 1.0 453 364 3210
45°-Bend (L) 54 1.4 436 350 935
45°-Bend (H) 752 0.5 1250 886 4247
Coup. Line 124.6 0.3 1536 1232 8692

test set contains two matched ports; the remaining two ports
of the coupled line are terminated with match loads verified
to produce less than -30 dB return over the measurement
band. A separate measurement with a uniform line showed
the SMA connectors to generate returns on the order of
-25 to -15dB in this measurement band. This precludes
the possibility of a successful S7; reflection measurement.
For S3; coupling, Libra and the MoM code are in good
agreement with measurement up to 2.5 GHz, with the MoM
code coming closer to predicting the magnitude of the band-
pass peaks. Beyond 2.5 GHz, the measured coupling breaks
out of its previous pattern. Both Libra and MoM fail to
predict this, suggesting the emergence of nonideal phenomena
in this frequency range, including increased reflection from
the SMA connectors. For Sy; coupling, Libra and MoM are
in close agreement, and both predict the overall character
of the measurement. The gap between measurement and the

Stub Transmission

Measurement [8]
o o o MoM - Triangular
It —«— MoM - Rectangular .-
- ---- Libra e
«
@O oS8} b
R N
= ~,
— 06
o
D o4
0.2
\_\ / \W/
\..,'
0

10 11 12

8 9
Frequency (GHz)

Fig. 6. Transmission response of stub; measured and computed with
method-of-moments (triangular and rectangular basis functions) and Libra v
3.000.
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2591 mm
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Fig. 7. Dimensions of coupled-line pair and a section of its discretization.

computed response increases with frequency, again indicating
the contributions of nonideal phenomena.

A third validation example is prompted by a recent paper
presenting FDTD to simulate microstrip discontinuities [3].
The discontinuity is an unmitered 45° bend with line width
W = 24 mm and substrate parameters h = 0.79 mm,
& = 2.21. The measured return loss in [3, Fig. 13} exhibits
significant ringing—a result that cannot be explained by a
single bend. The published FDTD results also show ringing,
but they do not match well with experiment beyond 4 GHz.
The simulation data using the TOUCHSTONE and TCKT
commercial packages published in the same reference show a
smooth increase in return loss with increasing frequency, and
this agrees well with the trends predicted with our triangular
MoM code under three different levels of discretization and
simulation on Libra, seen in Fig. 9. Our Libra results identi-
cally match the published TOUCHSTONE results, which is to
be expected, as Libra is an extension of TOUCHSTONE. We

N Coupling
Sk
10
o st »
z
=
» s
* Measurement
a5 ° e e MoM - Triangular]
° ===-Llibra
40 05 1 15 2 25 3 3s
Frequency (GHz)
(a)
R Isolation
st
-0}
m
o -15¢
=
-
@D asp
2 Measurement
ash © o o MoM - Triangular |
---~Libra
B T T W R X B S K
Frequency (GHz)
(b

Fig. 8. Coupled-line transmission (a) S21 and (b) S41: measured and

computed with triangular MoM and Libra v 3.000.



KIPP AND CHAN: TRIANGULAR-DOMAIN BASIS FUNCTIONS FOR FULL-WAVE ANALYSIS

45°-.Ber’1d Reflection
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[ +++ MoM - Med. Discr.
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Libra ’

T 4 6 § 10 1z 14
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Fig. 9. Reflection response of 45°-bend computed with triangular MoM and
. Libra v 3.000.

believe that the measured ringing is induced by reflections
at the ports, probably from connectors inadequate for this
measurement. Judging from the return predicted by the Libra
and TCKT packages and our MoM code, a connector with less
than -45 dB return would be required for a good measurement.
As mentioned earlier, our own experience using SMA coaxial-
to-microstrip adaptors indicates that reflections below -20 dB
cannot be reliably measured. Reference [3] does not indicate
what manner of connection to the bend was used. It is our
opinion that the ringing in the published FDTD response is
probably due to the error introduced by the absorbing boundary
condition [23]. _

For the MoM simulation, three different levels of discretiza-
tion are used. There are 2, 4, and 6 square subcells spanning
the line for the low, medium, and high levels of discretization;
a portion of the low-level discretization is illustrated in Fig. 9.
The two entries for the 45° bend in Table I are for the low and
high discretization. All three give nearly identical results and
agree with Libra in a frequency region where the reflections are
all below -20 dB. No data are shown for the low discretization
beyond 8 GHz, as it begins to fail at higher frequencies. Our
experience indicates that there should be at least 20 subcells
per wavelength to get acceptable results. This is a stiffer
requirement than the 10-per-wavelength rule for MoM applied
to far-field scattering problems; scattering parameters are
more sensitive to errors in current than the far fields. At
low frequencies, high' levels of discretization are not only
unnecessary but, in fact, become a liability as the electrical
lengths of the ports shrink below one-quarter of a wavelength.
While the port subcells can be stretched to maintain the
electrical length of the port without increasing the number of
unknowns, this introduces a discretization discontinuity whose
effect, while small, can generate unacceptable errors in - the
computed reflection coefficient when the reflection from the
actual discontinuity is also small, as is the case here. For
this reason, the plotted results for the low, medium, and high
discretizations begin at 1, 2, and 4 GHz, respectively.

B. Rectangular versus Triangular Discretization

A microstrip corner bend and miter bend were simulated
with the rectangular and triangular MoM codes to demonstrate
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0.75 mm

‘A Staircase

Corner Bend Miter Bend Approximation

Fig. 10. Dimensions and discretization of corner and miter bends, with
staircasing evident in rectangular discretization of miter bend.

the deficiencies which can arise from approximate represen-
tation of the conductor geometry. The geometry of the bends
considered is described in Fig. 10; the ports, which extend
60 subdivisions, have been truncated for clarity. The substrate

_ parameters are h = 1.27 mm, &, = 10. The corner bend can

be exactly duplicated with either the triangular or rectangular
discretization. The miter bend can be rendered exactly with
the triangular discretization, but only approximately under
a rectangular discretization. The staircase approximation of
the miter bend was also conducted with the triangular MoM
code. The computed Sy; reflections are shown in Fig. 11. The
triangular and rectangular simulations of the corner bend and
staircase approximated miter bend are in excellent agreement.
The approximate miter bend has several decibels less reflec-
tion, as would be expected given a less abrupt transition. The
true miter provides a still better transition, as evidenced by
the simulation results under the triangular MoM code. The
agreement between the triangular and rectangular code in the
simulation of the corner and approximate miter bend shows
that the predicted improvement in the true miter is due only
to accurate rendering of the shape, and not to small numerical
differences in two different computer codes.

VI. CONCLUSION

A frequency-domain method for characterizing arbitrarily .

_shaped, planar microstrip discontinuities has been described.

This technique is based on solving the mixed-potential in-
tegral equation with the method of moments (MoM) under -
a triangular discretization of the microstrip upper conductor.

Ber]d Reflection

o o o MoM - Triangular
s+ ++MoM - Rectangular

a -
T
A
-
— Corner Bend
25 —---Miter Bend (approx.)
—-—Miter Bend ?true)
W45 o 11 _1z 13 14
Frequency (GHz)

Fig. 11. Reflection response of corner bend and approximate miter bend
computer with both triangular and rectangular MoM, and true miter bend
computed with triangular MoM.
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Triangular basis functions offer significant improvement over
rectangular basis functions in their ability to conform to
arbitrary shapes, including ports which extend at oblique
angles. The implementation includes a number of techniques to
significantly reduce the computational task including efficient
evaluation of Green’s function for microstrip and exploitation
of redundancy in the discretization. These efficiencies allow
simulations where the time spent filling the MoM impedance
matrix is on the order of the time spent solving that matrix.
Several validating examples confirm the overall approach. A
study of a corner and miter bend shows how approximate
rendering of a discontinuity in a rectangular discretization can
degrade the accuracy of the simulation.
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